

UNIVERSIDAD DEL MAR CAMPUS PUERTO ESCONDIDO

CALIDAD HIDROGEOQUÍMICA DE LAS AGUAS DEL RÍO ATOYAC-VERDE, A SU PASO POR ECOSISTEMAS FORESTALES DE OAXACA, MÉXICO.

Tesis

Que para obtener el Título Profesional de Ingeniero Forestal

> Presenta Erika González Varela

Director Dr. Edgar Iván Sánchez Bernal

Puerto Escondido, Oaxaca 2019

Dedicatoria

A mi padre:

Ing. Joel Gustavo González Villareal.

A mi madre:

María de la Luz Varela Carrera, el Lucero en mi camino.

A mis hermanos por siempre estar como mis dos grandes pilares Gustavo y Lucero.

Agradecimientos

Al comité de sinodales, se agradece por su tiempo y esfuerzo para que este trabajo culminara de manera correcta.

A los Doctores:

Edgar Iván Sánchez Bernal

Héctor Manuel Ortega Escobar

Álvaro Can Chulim

A la Ing. Gelia Sandoval Orozco

Y al M. en C. Ricardo García García

Agradezco también a todas las personas que con su apoyo incondicional permitieron la culminación de esta nueva etapa profesional.

 $\it Ya\ las\ que\ se\ convirtieron\ en\ mi\ segunda\ familia.$

Fam. Chowaniec Echeverría

Fam. Santiago Morales

ÍNDICE

Dedicatoria	2
Agradecimientos	3
I Introducción	8
II. Hipótesis	10
III. Objetivos	10
3.1 Objetivo general	10
3.2 Objetivos específicos	10
IV. Revisión de literatura	11
4.1 El bosque y el agua. Importancia ecohidrológica	11
4.2 El agua y su calidad	12
4.2.1 Geoquímica de los elementos que participan en la composición de las aguas	14
4.2.2 Cationes y aniones mayoritarios	16
4.2.2.1 Calcio (Ca ²⁺)	16
4.2.2.2 Magnesio (Mg ²⁺)	17
4.2.2.3 Sodio (Na ⁺)	17
4.2.2.4 Potasio (K ⁺)	18
4.2.2.5 Carbonatos (CO ₃ ²⁻)	18
4.2.2.6 Bicarbonatos (HCO ₃ ⁻)	19
4.2.2.7 Cloruros (Cl ⁻)	19
4.2.2.8 Sulfatos (SO ₄ ²⁻)	20
4.3 Parámetros que evalúan la salinidad de las aguas	20
4.3.1. Conductividad eléctrica (CE)	
4.3.2 pH	21
4.3.3 Índice de salinidad efectiva (SE)	22

4.3.4 Índice de salinidad potencial (SP)	23
4.3.5 Potencial osmótico (Ψπ)	23
4.4 Uso de aguas residuales para riego agrícola a nivel mundial	24
4.5 Uso de aguas residuales para uso agrícola en México Rio Atoyac –Verde	25
4.6 Sales hipotéticas y su solubilidad	27
4.6.1 Criterios de sodicidad	28
4.6.1.1 Relación de adsorción de sodio (RAS)	29
4.6.1.2 Carbonato de Sodio Residual	30
V Materiales y métodos	30
5.1 Localización del área de estudio	30
5.1.1. Clima	32
5.1.2 Suelos	32
5.1.3. Vegetación	33
5.1.4. Geología	33
5.1.4. Hidrografía	34
5.1.5. Usos del agua	35
5.2. Muestreo y análisis químicos de agua	35
VI RESULTADOS	38
6.1 Composición iónica de las aguas superficiales del Río Atoyac-Verde	39
6.1.1 Alto relieve	39
6.1.1.1 pH, CE, STD y ψπ de las aguas del Río Atoyac-Verde en el alto relieve	39
6.1.1.2 SE, SP, RAS y CSR de las aguas del Río Atoyac-Verde en el alto relieve	43
6.1.2 Meso relieve	44
6.1.2.1 pH, CE, STD y ψπ de las aguas del Río Verde en el meso relieve	44
6.1.2.2 SE, SP, RAS y CSR de las aguas del Río Atoyac-Verde en el meso relieve	47

6.1.3 Bajo relieve	48
6.1.3.1 pH, CE, STD y ψπ de las aguas del Río Verde en el bajo relieve	48
6.1.3.2 SE, SP, RAS y CSR de las aguas del Río Atoyac-Verde en el bajo relieve	52
VII. Discusión	53
7.1. Composición iónica de aguas superficiales del Río Atoyac-Verde	53
7.2 Parámetros fisicoquímicos de las aguas analizadas del Río Atoyac – Verde	59
7.2.1 pH	59
7.2.2 CE	60
7.2.3 STD	
7.2.4 Ψπ	
7.2.5 SE y SP	
7.2.6 RAS	
7.2.7 CSR	
7.2.8 Precisión de los análisis químicos	
•	
VIII Conclusiones	
XIX Bibliografía	68
Índice de cuadros	
Cuadro 1. Límites permisibles según NOM-127-SSA1-1994 de concentración iónica	de
aguas para consumo humano	13
Cuadro 2. Secuencia de extracción iónica durante la meteorización.	15
Cuadro 3. Categorías de migración de los elementos.	16
Cuadro 4. Clasificación del agua según su salinidad efectiva	22
Cuadro 5. Clasificación de las aguas según su salinidad potencial.	23
Cuadro 6. La solubilidad de las sales	27

Cuadro 7. Clasificación del agua con base en el contenido de sodio.	29
Cuadro 8. Parámetros físico-químicos y la metodología utilizados	36
Índice de figuras	
Figura 1. Ubicación de la zona de estudio y sitios de muestreo.	31
Figura 2. Correlación entre la CE y los STD de las aguas del alto relieve	42
Figura 3. Correlación entre la CE y los STD de las aguas del meso relieve	47
Figura 4. Correlación entre la CE y los STD de las aguas del bajo relieve	51
Figura 5. Diagrama de Piper del alto relieve (Gidahatari, 2016).	53
Figura 6. Diagrama de Piper del meso relieve (Gidahatari 2016).	54
Figura 7. Diagrama de Piper del bajo relieve (Gidahatari 2016)	54
Figura 8. Efecto de la sodicidad de las aguas del río Atoyac- Verde en la infiltración	n de los
suelos de la cuenca.	64
Figura 9. Representación gráfica de electroneutralidad de las aguas muestreadas	65
Índice de tablas	
Tabla 1. Composición iónica de las aguas del río Atoyac-Verde del alto relieve	40
Tabla 2. Parámetros fisicoquímicos de aguas de afluentes del Río Atoyac Verde en	el alto
relieve.	41
Tabla 3. Composición iónica de las aguas del río Atoyac-Verde del meso relieve	45
Tabla 4. Parámetros fisicoquímicos de aguas de afluentes del Río Atoyac Verde en e	el meso
relieve	46
Tabla 5. Composición iónica de las aguas del río Atoyac-Verde del bajo relieve	49
Tabla 6. Parámetros fisicoquímicos de aguas de afluentes del Río Atoyac Verde en	el bajo
relieve	50

I.- Introducción

La composición iónica de las aguas de una cuenca depende de tres factores: la climatología, la geología de la región y el tipo de actividades humanas que en ella se desarrollan (Riera & Morgui, 1990). Esta composición iónica se origina por el intemperismo de las rocas que el agua atraviesa, lo que guarda relación con el principio de Plinio el Viejo (Siglo 24 a 79 d.c). Por otra parte, el devenir histórico del hombre y su desarrollo civilizatorio ha sido acompañado por el aprovechamiento de biomas forestales y el uso del agua, sin embargo, las actividades tecnógenas derivadas de la revolución industrial, han propiciado cambios en la disponibilidad y en la calidad fisicoquímica de las aguas destinadas a diferentes usos antrópicos. La disponibilidad promedio anual de agua en el mundo es de aproximadamente 1,386 millones de km³, de los cuales el 97.5% es agua salada y sólo el 2.5%, 35 millones de km³. De esta cantidad casi el 70%, es decir 24.5 millones de km³, no está disponible para consumo humano debido a que se encuentra en forma de glaciares, nieve o hielos perpetuos y el 30% restante es agua dulce subterránea. Solo el 1%, representado por 350,000 km³, se encuentran en lagos, ríos, humedad en el suelo y aire, humedales, plantas y animales. En México, el volumen de agua que se obtiene por precipitación cada año es de 1,489 Km³. (Comisión Nacional del Agua, 2011). El país recibe alrededor de 50 Km³ por importaciones de los ríos de las fronteras norte y sur; y exporta 0.432 Km³del río Bravo a los Estados Unidos de acuerdo con el Tratado sobre la distribución de aguas internacionales firmado en 1944 (Secretaria de Relaciones Internacionales, 1994).

El crecimiento demográfico y la intensa actividad industrial, demandan grandes volúmenes de agua con un elevado costo en la gestión del recurso. La expansión de la mancha urbana de las principales ciudades del mundo y la necesidad de abasto hídrico han provocado la degradación de las reservas naturales forestales y acuáticas, que generan situaciones de escases, indisponibilidad temporal y mala calidad del agua sobre todo en países subdesarrollados como México (Sánchez *et al.* 2014). El gran volumen de agua utilizado por las grandes urbes, implica cambios en la composición química del agua de los ríos, ya que esta es alterada por el vertido de aguas residuales a sus cauces, lo que implica problemas de contaminación y de infición; como ocurre en las cuencas más pobladas, principalmente las situadas en el centro y norte del país, tal es el caso de las cuencas Lerma-Chapala, Valle de México, río Nazas, río Bravo y río Tijuana, que presentan una fuerte presión hídrica como

resultado de una baja oferta natural de agua y una intensa actividad productiva (Bustillos, 2004). Otro ejemplo de aguas residuales utilizadas en la producción agrícola, se tiene en el Valle del Mezquital, Hidalgo, el cual es irrigado en una superficie de 180 000 ha con aguas residuales provenientes del Río Tula, que se destinan a la producción de cereales y hortalizas que se consumen en la Ciudad de México. Ahora bien, en las Cuencas hidrográficas de México existen contrastes respecto de la suficiencia hídrica y calidad química del agua. En el caso específico de la Cuenca del río Atoyac-Verde, cuya calidad química en su curso aguas arriba-aguas abajo es modificada primero por los usos urbano e industriales que le dan los habitantes de la Ciudad de Oaxaca y segundo por los usos agrícolas, pecuarios y acuícolas de las poblaciones ribereñas, que han derivado en la contaminación de suelos y acuíferos del alto, meso y bajo relieve. La necesidad hídrica ha orillado al uso de aguas residuales para diversas actividades como la agricultura y la jardinería. Este tipo de aguas representa un problema, principalmente por su impacto negativo sobre la salud humana y el medio ambiente; sin embargo, existe una amplia gama de opciones para su tratamiento. Algunas alternativas son el uso de humedales y la reutilización de aguas grises, que han demostrado tener beneficios ambientales cuando son aplicadas (Naranjo, 2010).

Los bosques y selvas han sufrido procesos acelerados de destrucción por actividades humanas, en lo fundamental por cambios de uso en favor de actividades agrícolas y ganaderas de baja productividad, aprovechamientos forestales irracionales y los incendios. La vegetación de la cuenca del río Atoyac-Verde constituye una reserva de bosques y selvas tropicales subhúmedas de México. Este status biótico es producto de interacciones entre factores biofísicos, hidrológicos, biológicos y antropogénicos (Smith & Smith, 2007). Su alta diversidad, riqueza de especies, enorme biomasa y compleja estructura se encuentran estrechamente ligadas a la heterogeneidad de las condiciones que ofrecen los frágiles suelos y los microclimas de la cuenca (Roman, 2007). Con base en lo anterior, se requieren de estudios hidrogeoquímicos para determinar la calidad química de las fuentes naturales y saber si existe suficiencia hídrica para los diferentes usos que se practican en esta cuenca hidrográfica. El objetivo del presente estudio, es determinar la composición y la calidad química de las aguas del río Atoyac-Verde a su paso por la cuenca que lleva su nombre en el estado de Oaxaca y conocer cómo influyen la geomorfología y el status de los biomas forestales en dicha calidad.